skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Porter, C E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nernst coefficient measurements are a classic approach to investigate charge carrier scattering in both metals and semiconductors. However, such measurements are not commonly performed, despite the potential to inform material design strategies in applications such as thermoelectricity. As dedicated instruments are extremely scarce, we present here a room temperature apparatus to measure the low field Nernst coefficient (and magneto-Seebeck coefficient) in bulk polycrystalline samples. This apparatus is specifically designed to promote accurate and facile use, with the expectation that such an instrument will make Nernst measurements de rigueur. In this apparatus, sample loading and electrical contacts are all pressure-based and alignment is automatic. Extremely stable thermal control (10 mK of fluctuation when ΔT = 1 K) is achieved from actively cooled thermoelectric modules that operate as heaters or Peltier coolers. Magneto-Seebeck measurements are integrated into the system to correct for residual probe offsets. Data from the apparatus are provided on bulk polycrystalline samples of bismuth, InSb, and SnTe, including raw data to illustrate the process of calculating the Nernst coefficient. Finally, we review how Nernst measurements, in concert with Seebeck, Hall, and electrical resistivity, can be analyzed via the Boltzmann equation in the relaxation time approximation to self-consistently predict the Fermi level, effective mass, and energy-dependent relaxation time. 
    more » « less